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Abstract. An inversion method for ion Doppler shift of spectrum lines was developed for plasma velocity
measurements. By reducing the problem to the vectorial Radon transform, the characteristics of plasma
ion velocity distribution such as vector potential/vorticity and velocity components were computed in two-
dimensional space. Computer simulation of the reconstruction of different vector potential (vector field)
models gives evidence that the reconstruction errors are acceptable, and the method can surely be used
for real experimental data.

PACS. 07.05.Tp Computer modeling and simulation – 02.60.Cb Numerical simulation; solution
of equations – 52.70.Kz Optical (ultraviolet, visible, infrared) measurements

1 Introduction

The Doppler shift and broadening effects are often used
as spectroscopic measurement techniques of important
plasma parameters. Spectral line profiles of plasma ions
have often been measured to analyze ion temperature and
density, plasma flow velocities, magnetic and electric field
strengths, turbulence parameters [1–5]. An important dis-
advantage of spectroscopic measurements is that the line-
integrals of local parameters are measured along a line
of sight. This complicates the interpretation of the mea-
sured Doppler shift of the signals, which contain both
plasma velocity and temperature information. Therefore,
an inversion technique is needed, unless the line radia-
tion is quite localized, to obtain the local parameter from
the measurements. The well-known Abel inversion can be
used to reconstruct the emissivity profile of plasmas with
cylindrical symmetry, whereas scalar tomography meth-
ods are usually used in a non-symmetric case if effects of
plasma motion are not taken into account [2,6,7]. How-
ever, in presence of plasma motion neither Abel inversion
nor scalar tomography methods may be used because the
emission of given wavelength is dependent on the orien-
tation of line observation [3,4]. On the other hand, the
plasma flow is one of the key issues to understand the
confinement of tokamaks, such as the H-mode and the in-
ternal transport barrier. A large flow shear spreads out
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magnetic islands and suppresses the growth of plasma in-
stabilities, improving plasma confinement. We developed
a numerical method of vector tomography to be applied
to plasma flow measurements by using spectral line mea-
surements to extract the Doppler-shift of spectral lines. A
cylindrical plasma boundary was used to demonstrate 2-D
toroidal flow measurements for plasma toroids. A center-
coil area is an opaque obstruction for emission radiation,
and projections in this case will have data-missing parts.
Our algorithm based on the maximum entropy principle
was adopted for tomographic reconstruction from projec-
tions with data-missing parts. The main idea of modi-
fication comes from the Gerchberg [8] and Papoulis [9]
algorithm and has been applied to tomography problems
in [10]. This algorithm is based on the idea of “artificial”
translucence of opaque medium, which means that the
lost information concerning the data-missing part of one
viewing position can be recovered by measured data from
other directions. Iterative modifications using a priori in-
formation about the outline and the position of the opaque
obstruction allow us to recover the surrounding part of the
opaque obstruction. Other methods related to the prob-
lem with incomplete set of measurements are considered
in [11–13].

In the first part of what follows we intend to show how
the vector tomography equation can be derived for spec-
troscopic measurements. Part two describes the mathe-
matical method for solving the vector tomography prob-
lem. Computer simulations are presented in part three.
Our method enables us to reconstruct 2-D flow-lines or
some specific component of flow velocity based on the as-
sumption of plasma incompressibility div V = 0.
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2 Doppler spectroscopy

Suppose that plasma is optically thin, and it is assumed
that the line width profile is predominantly caused by the
Doppler broadening mechanism. The emissivity per unit
volume at frequency ν, and position x = (x, y), and in
the direction η is given by the following line integral over
the ion velocity distribution function f(ϑ) in a velocity
space [4,5]:

ε(ν′; x,η) = ε0(x)

∞∫
−∞

f(ϑ)δ(ν′ − ϑ · η) dϑ, (1)

where ε0(x) is isotropic emission, ϑ(x) = V(x)/c is a non-
dimensional velocity field, ν′ = (ν−ν0)/ν0 is a normalized
frequency, ν0 is the emission line center and c is the speed
of light.

Under the conditions when self-absorption and refrac-
tion may be neglected, the intensity of radiation from the
plasma I

ξ
(ν′;u) can be found simply by integrating the

power emitted along the line of observation L(u, ξ):

Iξ(ν′;u) =
∫

L(u,ξ)

ε(ν′; x,η)dl

=
∫
R2

ε(ν′; x,η)δ(u− x · ξ)dx, (2)

where the unit vector η is orthogonal to the vector ξ.
In special cases, when the particle velocity distribu-

tion is Maxwellian, the Doppler frequency shift results is
a Gaussian line profile

ε(ν′; x,η) =
ε0(x)√

2π∆ν′2(x)
exp
(
−(ν′ − ϑ)2

/2∆ν′2
)
, (3)

where ϑ = ϑ ·η is the normalized Doppler frequency shift
of the spectral line, and ∆ν′ is the line width. These are
related to the plasma velocity and temperature of the ra-
diating particles, respectively. Nonetheless, in the general
case, the measured signal (2) along a sight line is not Gaus-
sian and is dependent on the direction of observation at
a given wavelength. Therefore, equation (2) cannot be di-
rectly inverted either by Abel’s or by scalar tomography
techniques [3]. However, some information can be obtained
by integrating the spectral profile over the normalized fre-
quency ν′ [4]. By introducing the spectral moments of the
line-integrated emission by the formula

µ(n) =

∞∫
−∞

Iξ(ν′;u) ν′ndν′, (4)

the following equalities can be obtained

µ(0) ≡ R{ε0}(u, ξ) =
∫

L(u,ξ)

ε0(x) dl, (5)

µ(1) ≡ V{ϑ}(u,η) =
∫

L(u,ξ)

ε0(x)ϑ(x) · dl, (6)
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Fig. 1. The scheme of the data registration for the vector field.
� · � = 0, OA = u.

where R and V denote scalar and vectorial (see defini-
tion below) Radon transformations, respectively. The vec-
tors ξ, η and the variable u are shown in Figure 1. Equa-
tion (5) shows that the isotropic emissivity ε0(x) can be
determined by scalar tomography methods, whereas equa-
tion (6) is related to the tomography of vector fields and
requires special inversion methods.

3 Inversion method

Assume that ε0(x) is known as the solution of equa-
tion (5). Without any loss of generality, equation (6) can
be considered in the following form and will further be
called the vectorial Radon transform

V{ϑ}(u,η) =
∫

L(u,ξ)

ϑ(x) · dl, (7)

where vector η is the unit vector along the line of obser-
vation and orthogonal to the vector ξ.

For the measurements in the two-dimensional space,
the geometry of data registration is outlined in Figure 1.
The unit vector ξ is defined as ξ = (cos θ, sin θ), and θ
is an angle between the positive direction X-axis and the
line OA. The problem in this case may be conveniently
considered in terms of the vorticity vector function ζ =
curlϑ, which has only one component ζ = (0, 0, ζ) and ζ
is defined conventionally as

ζ(x, y) =
∂ϑy
∂x
− ∂ϑx

∂y
, (8)

where ϑx and ϑy are the components of a vector field ϑ.
The following proposition (9) can be easily proved. For

the first time this result in the Fourier space for a two-
dimensional vector field was given in [14]

∂

∂u
V{ϑ}(u,η) = R{ζ}(u,η). (9)
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To obtain the velocity field out of the vorticity distribution
it is necessary to use Helmholtz’s decomposition theorem

ϑ = curlΨ + gradΦ, (10)

where Ψ and Φ are, respectively, the vector and scalar po-
tential functions, and curlΨ and gradΦ are, respectively,
the solenoidal and irrotational parts of ϑ. Since ϑ is con-
fined to the x−y-plane, a single component of the vector
potential Ψ in the z-direction is sufficient to define curlΨ
uniquely; i.e. one can write Ψ = ψ ez. Thus, in two dimen-
sions, ϑ(x, y) is completely determined by the two scalar
functions Φ(x, y) and ψ(x, y). The velocity components
write

ϑx =
∂ψ

∂y
+
∂Φ

∂x
, ϑy = −∂ψ

∂x
+
∂Φ

∂y
, (11)

and after substitution in (8) one obtains

∇2ψ = −ζ. (12)

Using the following Radon transform property [15]

R{∇2f(x)} =
∂2R{f}
∂u2

,

equation (9) may be rewritten as follows

V{ϑ}(u,η) = − ∂

∂u
R{ψ}(u,η), (13)

or in the form

R{ψ}(u,η) = −
u∫

−∞

V{ϑ}(u′,η)du′. (14)

The approach to inversion of the vectorial Radon trans-
form is now reduced to a scalar Radon inversion of in-
tegrated measured data, and any algorithm of scalar to-
mography can now be applied for determination of the
ψ-function. Equation (14) shows that only the solenoidal
component ψ (and hence, curlΨ) is determined uniquely
from the line-integrated data. There is no contribution
from the irrotational component gradΦ in equation (14).
This allows to reconstruct the solenoidal component inde-
pendently of the irrotational component. As shown for the
first time in [14], the component gradΦ can be recovered
from the boundary values of ϑ. Now assume that only
solenoidal motion is present, i.e. the velocity components
are defined as follows

ϑx =
∂ψ

∂y
, ϑy = −∂ψ

∂x
·

Several models for the z-component of the vector poten-
tial ψ, and its reconstructions by the line-integrated data
will be considered in the next section. Any suitable algo-
rithm for scalar tomography can now be applied for the
determination of the ψ-function from equation (14). The
generalized maximum entropy method was developed for
this problem. It was discussed in detail in [16], and a brief
explanation is given in Appendix B.

Fig. 2. The fan beam scheme at one of the positions of regis-
tration of the projections. The detector position is defined by
the distance OB = d and by the angle θj between the positive
directions of X- and Xj-axes.

4 Computer simulation

For these simulations we will consider a vector field with
the vector potential Ψ . In the two-dimensional space the
potential Ψ has only one component and writes Ψ =
(0, 0, ψ), where ψ is chosen of the form

ψ(ρ) = exp
(
− (ρ− ρ0)2

2σ2

)
, (15)

where ρ is the radius in a polar system of coordinates,
ρ0 defines the shift of the Gaussian function. We can get
the models, which are either peaked if ρ0 = 0 or hollow
if ρ0 6= 0. The corresponding vector field is given by the
components

vx = exp
(
− (ρ− ρ0)2

2σ2

)(
−y(ρ− ρ0)

ρσ2

)
vy = exp

(
− (ρ− ρ0)2

2σ2

)(
x(ρ− ρ0)
ρσ2

)
·

In the process of computations it is more suitable to use
the half-width ∆ρ = 2

√
(2 ln 2) σ rather than σ in (15).

We plan to use this tomography diagnostics for the spher-
ical tokamak TS-4 [17]. The device TS-4 was used as a
sort of prototype. The developed method can easily be
extended to any spherical tokamak experiment with var-
ious geometry of measurements. The spherical tokamak
TS-4 can produce one or two spherical tokamaks of ma-
jor radius of 0.5 m and aspect ratio of 1.2–1.9 inside its
cylindrical vacuum vessel having the length of 2 m and the
diameter of 1.8 m. Its spectrum line emission of various
impurity species can be measured by detectors located in-
side and outside of the vacuum vessel. If the measurements
are performed at the plane z = const as in Figure 2, where
z is the axis of device symmetry, the information about
toroidal flow velocity can be extracted from the data. On
the other hand, if detectors are located along the axis z
of the vacuum vessel, one can obtain information about
a poloidal vector field. Owing to the two different mod-
els (peaked and hollow) we have examined the algorithm
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Maximum Entropy Method - 2D: Fan-beam geometry
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Maximum Entropy Method - 2D: Fan-beam geometry
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Fig. 3. The first model of ψ-function; exact, (a), and reconstructed, (b). ρ0 = 0.0, ∆ρ = 0.55. Relative error of reconstruction
is 1.2%.
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Maximum Entropy Method - 2D: Fan-beam geometry
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Fig. 4. The values of the vector field for the first model: exact, (a), reconstructed, (b). ρ0 = 0.0, ∆ρ = 0.55.

using the scheme of measurements as shown in Figure 2.
In the both numerical experiments the total number of
10 1-D projections were used, each of them containing
51 ray-sums. The noise level was taken to be 5% and 10%
of the maximum level of measured data (projections). The
reconstruction errors, which depend on a number of pro-
jections and level of noise for the first (—◦—, —∗—) and
the second (—+—, —�—) models, are given in Figure 9.
The detectors were located uniformly in θj ∈ [0, π]. The
reconstruction was performed inside the circle of normal-
ized radius R = 1. An exact and reconstructed ψ-function
are drawn in Figures 3a, 3b, 6a and 6b. With noise added
to the projection data, the relative error of reconstruction
is 1.2% for the first and about 17% for the second model,
respectively. The vector fields, exact and reconstructed,
corresponding to those of two ψ-functions, are shown in
Figures 5a, 5b, 8a and 8b. In Figures 4a, 4b, 7a and 7b

the values |ϑ(x, y)| = ϑ2
x + ϑ2

y of these vector fields are
shown.

5 Conclusion

In this paper, a unique numerical method for reconstruct-
ing the vector potential of a plasma velocity field has
been proposed. It has been developed by applying a vecto-
rial Radon transform to spectroscopic measurements. The
components of the vector field are recovered by differ-
entiation of a single component of the vector potential.
A special modification of the maximum entropy method
for sign-altering functions was implemented for the in-
version of the vectorial Radon transform. An alternative
approach could be used for reconstructing the vorticity
field by direct differentiation of (9). But in this case, the
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(a) (b)

Fig. 5. The velocity vector field for the first model: exact, (a), and reconstructed, (b). ρ0 = 0.0, ∆ρ = 0.55.
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Maximum Entropy Method - 2D: Fan-beam geometry
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Fig. 6. The second model of ψ-function: exact, (a), and reconstructed, (b). ρ0 = 0.45, ∆ρ = 0.1. The relative error of the
reconstructed entity is 11%.
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Fig. 7. The value of the vector field for the second model: exact, (a), reconstructed, (b). ρ0 = 0.45, ∆ρ = 0.1.
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(a) (b)

Fig. 8. The velocity vector field for the second model: exact, (a), and reconstructed, (b). ρ0 = 0.45, ∆ρ = 0.1.
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Fig. 9. The error of reconstruction (per cent) of ψ-function
depending on the number of projections and the level of noise;
the noise of 5% (—◦—), (—+—) and the noise of 10% (—∗—),
(—�—) for the first and the second models, respectively.

experimental data should be differentiated, and instabil-
ity of this procedure requires a regularization technique
to obtain a robust solution. As a result of computer simu-
lation, the reconstruction error observed was found to be
substantially dependent on the type of the model, on the
number of projections, and it is quite robust to the level of
noise (see Fig. 9). The technique developed is means to be
used for plasma flow velocity reconstruction in the spher-
ical tokamak TS-4, and can easily be extended not only
to other spherical toroidal plasmas but also to all kinds of
toroidal plasmas.

The first author would like to express his gratitude to the staff
of High-Temperature Plasma Center, University of Tokyo, for
their great hospitality. The work was partially supported by
the RFBR, project No. 00-01-00219.

Appendix A

A.1 Maximum entropy inversion method (MEM)

In this section we briefly consider a version of MEM
adapted to sign-altering functions. Because the right part
of (14) may contain a negative values, the MEM should be
modified for this case. The scalar function g(x) used in this
section corresponds to the ψ-function in equation (14).
The geometry of measurement and an appropriate coor-
dinate systems are shown in Figure 2. We assume that
the unknown source function g(x) is continuous and has a
compact support D. It is convenient to employ a different
frame of reference for each fan beam.

Let x = (x, y) be Cartesian coordinates. For the jth
fan beam we introduce the rotated frame of reference xj =
(xj , yj) as follows

xj = Rjx.

For the two-dimensional case the matrix of rotation Rj
writes

Rj =
(

cos θj sin θj
− sin θj cos θj

)
.

We also introduce, following [19], the fan coordinates (u, v)
with the vertex at y = −d by the transformation formulas

u =
x

1 + y/d
, x = u(1 + v/d),

v = y, y = v.

Applying this transformation to the rotated system of co-
ordinates (xj , yj) we obtain

uj =
xj

1 + yj/d
, xj = uj(1 + vj/d),

vj = yj , yj = vj .

The functional dependence, direct and inverse, respec-
tively, between (uj, vj) and (x, y) defined as above will
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be expressed for j = 1, 2, ..., J in the form

uj = Uj(x, y), x = Xj(u, v),
vj = Vj(x, y), y = Yj(u, v).

Without any loss of generality we can assume that the
measured data of the jth fan beam are known along the
xj-axis. The relation between the unknown source func-
tion g(x, y) and the projection functions Gj(u) measured
along the axis xj is

Gj(u) =
∫
R2

dx g(x) δ
(
u− Uj(x)

)

=

∞∫
−∞

dv
∣∣∣∂(x, y)
∂(u, v)

∣∣∣ g(Xj(u, v), Yj(u, v)
)
, (16)

where

J =
∂(x, y)
∂(u, v)

=

∣∣∣∣∣∣∣
∂x

∂u

∂y

∂u
∂x

∂v

∂y

∂v

∣∣∣∣∣∣∣ = 1 + v/d.

Let g+ and g− be the two positive functions bound up
with g as follows:

g+(x) =
{
g(x), if g(x) > 0;
0, if g(x) ≤ 0; (17)

g−(x) =
{
−g(x), if g(x) < 0;
0, if g(x) ≥ 0. (18)

Using the Lagrangian method of multipliers, the problem
of determination of the function g is reduced to the un-
constrained maximization of the Lagrange functional

L(g,Λ) = η(g)−
J∑
j=1

∞∫
−∞

duΛj(u)G̃j(u) (19)

G̃j(u) = Gj(u)−
∞∫
−∞

dv |J |(g+(Xj , Yj)− g−(Xj , Yj))

where Λ = (Λj), j = 1, . . . , J are Lagrange multipliers,
Xj = Xj(u, v), Yj = Yj(u, v). The entropy functional η(g)
is defined as follows

η(g) = −
∫ ∫

D

dxdy
(
g+(x, y) ln(g+(x, y)/V+)

+ g−(x, y) ln(g−(x, y)/V−)
)
, (20)

where V+ and V− are the constants representing an a pri-
ori magnitude for the positive, resp., negative part of g.
Initially we put V− = V+. The replacement of the variables
transforms the second integral to the form

∞∫
−∞

duΛj(u)

∞∫
−∞

dv |J | (g+(Xj , Yj)− g−(Xj , Yj)) =

∫ ∫
D

dxdy g(x, y)Λj(Uj(x, y)).

Taking the variations of L(g,Λ) with respect to the func-
tions g+ and g−, and equating each of the former to zero,
we obtain

g+(x, y) = V ′+

J∏
l=1

Hl

(
Ul(x, y)

)
, (21a)

g−(x, y) = V ′−

J∏
l=1

1
Hl

(
Ul(x, y)

) , (21b)

whereHl(·) ≡ exp(Λl(·)) and V ′+ = V+/e, V ′− = V−/e, e =
2.71828... are constants. The unknown functions Hj(·) are
determined now via the substitution of (21a) and (21b)
into the constraints (16):

Gj(u) =

∞∫
−∞

dv |J |
J∏
l=1

{
V ′+ Hl

(
Ul(Xj(u, v), Yj(u, v))

)
− V ′−
Hl

(
Ul(Xj(u, v), Yj(u, v))

)}

=

∞∫
−∞

dv |J |
J∏
l=1

{
V ′+Hl

(
Ulj(u, v)

)
− V ′−
Hl

(
Ulj(u, v)

)},
(22)

where Ulj(u, v) ≡ Ul(Xj(u, v), Yj(u, v)).
The following equations for the functions Hj are ob-

tained

Gj(u) = V ′+Hj(u)h1(u)− V ′−h2(u)
Hj(u)

, (23a)

h1(u) =

∞∫
−∞

dv
∣∣1 + v/d

∣∣ J∏
l6=j

Hl

(
Ulj(u, v)

)
, (23b)

h2(u) =

∞∫
−∞

dv
∣∣1 + v/d

∣∣ J∏
l6=j

1
Hl

(
Ulj(u, v)

) · (23c)

This algebra leads to the following iteration scheme

Hi+1
j (u) =

Gj(u)
2hi1(u)V ′+

+
[(

Gj(u)
2hi1(u)V ′+

)2

+
hi2(u)V ′−
hi1(u)V ′+

]1/2

, (24a)

for j = i (mod J) + 1;

Hi+1
j (u) = Hi

j(u), (24b)

for j 6= i (mod J) + 1;

H0
j (u) =

{
1, if Gj(u) 6= 0,
0, if Gj(u) = 0. (24c)

This describes the main part of the inversion algorithm.
The idea of “artificial” translucence is realized in the fol-
lowing way. At first, the missing data at the projections
are recovered by any method of interpolation. The above
inversion algorithm is applied to get some estimation of
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emissivity distribution. After that, the projection data are
computed numerically, and only the shadowed part of the
projections is retained, any other values are taken from the
experimental data to be used. On this step, any a priori
information may be added, for instance – positiveness.
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